rediff.com

NewsApp (Free)

Read news as it happens
Download NewsApp

Available on  

Rediff News  All News 
Rediff.com  » Business » How India can produce big-bang innovations

How India can produce big-bang innovations

Last updated on: August 12, 2004 11:50 IST

Part I: Can India produce billion-dollar innovations?

In the second of this 4-part series, Arindam Banerji discusses what will it take Indian scientists and technologists to start producing innovations that become large sources of wealth generation for India, India Inc and Indians.


We've looked at the metamorphosis that is overtaking Indian R&D. Yet, when compared to a list of innovations that the United States came up with (for the most part) way back in the 1920s and 30s, our best work of today does not quite match up in terms of impact.

So, we need to take a closer look at what is really missing in our technology crucible. . .

The gap. . . my lessons in 'Institutionalised Innovation'

My first three months at the University of Notre Dame were a revelation: these months probably taught me the most valuable and lasting lessons of my professional life.

Under the glare of daily exhortations of a young professor from MIT (Massachusetts Institute of Technology), I learned the basics of innovation, raising money and selling my ideas to customers and investors alike.

Strange thing is that after four years at India Institute of Technology, I had no inkling of any of the above. None at all!

Am I being too harsh on my IIT education? Probably, and things may have changed a shade since I graduated, but my point here is not necessarily to beat up on the IITs.

Table 4: 1980s

Invention

Year

Inventor's name

Liquid Crystal Displays

1984

RCA, Kent State

Mevacor to reduce cholesterol

1987

Merck

Prozac to reduce depression

1987

Ray Fuller

Table 4: 1990s

Invention

Year

Inventor's name

World Wide Web

1991

Tim Berners-Lee

Protease inhibitors for patients suffering from HIV

1995

Hoffmann-La Roche

Viagra

1998

Nick Terrett, Peter Ellis

Automated DNA sequencing machines

2000

Celera Genomics

So let's take this story a little further.

Sometime in 1996, a couple of us at a large stodgy printer company came up with a set of ideas that turned distributed computing on its head.

The old fogies of distributed computing that inhabited the company labyrinths told us: "We've been at this, since before you were born -- go play outside". Yet this large stodgy company, which was by no means had taken in the go-go attitude of the (Silicon) Valley, gave us a chance to change the industry.

The company got into a business that it was never into, on the conviction of a couple of young scientists and business development folks -- going against the cynicism of the grey beards.

Things did not work out as well as they should have for the printer company, but the ideas eventually led to a whole new $5 billion industry

In more recent times, as I become significantly richer in grey hair, I've been entirely unsuccessful in convincing at least two different large Indian software companies of adopting ideas that have subsequently led to multiple successful start-ups in Silicon Valley.

Again my intent is not to beat up on Indian IT companies for not taking up technology challenges and risks.

Also read: Are Indians Dumb?

Then there is the story that I keep repeating from my days as a freshman in engineering school. When asked a question on the possibility of building engine cylinders of non-circular cross-section, the decrepit professor jeered at the suggestion. Chastened, I never bothered to find out the truth until I ran across a magazine article describing the use of elliptical engine cylinders in some high-performance German cars.

Oh! well -- things like this happen, often enough it seems:

'Abhas Mitra, at the Bhabha Atomic Research Centre (BARC) in Mumbai, was perhaps the first and the only scientist, who openly challenged Stephen Hawking of Cambridge University, who is regarded by many as the modern-day Einstein. Naturally, Mitra now feels vindicated following Hawking's own admission two weeks ago at a conference in Dublin, Ireland, that there isn't a black hole 'in the absolute sense'. In essence, Hawking's 'new' black holes never quite become the kind that gobble up everything. Instead, they keep emitting radiation for a long time -- exactly what Mitra showed in his paper.

'Hawking's about-turn has vindicated Mitra. But, in retrospect, he feels sad about the treatment he got at home while trying to take on Hawking all by himself. Too 'embarrassed' to be associated with a man who challenged Hawking, even Mitra's close colleagues avoided him and he became an outcast.

'To add insult to injury, BARC authorities removed Mitra from the theoretical physics division on the excuse that this division was meant only for those doing 'strategic research'.

'"The ironic element in this whole exercise," Mitra told PTI, "is that the person who actually dared to show that there cannot be any black holes was completely ignored both by the academicians and the media.'

But then again I remember my background under-grad hardware course at a second-tier US school -- every week we'd get at least two questions, for which no answers existed -- innovating a solution was the only approach.

Different approaches to teaching innovation -- don't you think?

I know, I know, 'India ke baare mein humne bahut bura-bhala kaha diya." But, once we've satisfactorily beaten up this messenger, can we turn and take a look at the hard issue that really faces us.

If you look at a few of the key innovations from the eighties and the nineties, we literally get kicked in the gut. The question that screams out again and again is: when will India do this?

To understand this, we have to look at something called 'institutionalised innovation.'

So, what is institutionalised innovation?

Okay, so what is institutionalised innovation anyway -- encouragement for innovation when embedded deep within key institutions of society allows for a steady stream of high-impact innovations like the Polaroid, cell-phone, Xerox machine, MEMs (micro-electromechanical systems) and so on -- the hoops that innovators have to jump through to make a difference gets lowered.

You do not have to be one-in-a-billion to make a difference -- being one-in-10-million is good enough. And those numbers make all the difference. It is this improvement of odds that forms the crux of 'Institutionalisation of Innovation.'

So, ask yourself: would it take one Indian in a 100 million who could -- while working in India -- come up with something as earth-changing as the jet-engine? Or do you think it would take one Indian in a billion to achieve that feat?

Now ask yourself: what would it take to reduce the odds so that one Indian in 10 million could produce something fundamentally earth-changing like the photocopying machine?

How would we have to change as a society and as a country to reduce those odds of one in a billion Indians innovating the next radical shift in technology to, perhaps, one Indian in a 10 million achieving the same?

If you can figure out the changes, you have figured out how to institutionalise innovation. You have figured out what it takes not only to produce one good innovation every couple of decades, but to produce the kind of steady innovative disruptions that Tables 6-9 indicate.

Look closely, every few years within the US, somebody has come up with and produced an earth-shattering innovation or two. That does not happen by magic or coincidence and it isn't because the Americans are any smarter than the Indians.

It's because the US society, academia and industry have institutionalised innovation.

Table 6: 1940s

Invention

Year

Inventor Name

Radar

1940

Robert Watson-Watt

Cellular Phone (conceptually)

1947

D H Ring

Transistor

1947

Shockley, Bardeen, Brattain

Microwave Oven

1947

Percy Spencer

Magnetic Core Memory

1949

An Wang and then Jay Forrester

Table 7: 1950s

Invention

Year

Inventor's name 

The Pill

1951

Gregory Pincus

Thorazine

1952

Henri Laborit

Polio Vaccine

1954

Jonas Salk

Fortran, the first High level programming Language

1954

John W Backus

Disk Drive

1956

Reynold B Johnson

Implantable Pacemaker

1958

Wilson Greatbatch

Lasers

1958

Multiple people, including Kumar Patel of Bell Labs for the dioxide laser

Integrated Circuit

1959

Robert Noyce, Jack Kilby

Table 8: 1960s

Invention

Year

Inventor's name

Pampers disposable diapers

1961

Victor Mills

Modem

1962

US Airforce, AT&T

Mouse

1968

Douglas Engelbart

Charge coupled Devices

1969

George Smith, Willard Boyle

Automated Teller Machines

1969

Donald Wetzel

The Internet

1969

UCLA, Stanford amongst others

Table 9:1970s

Invention

Year

Inventor Name

Compact Disc

1970

James T Russell

Relational Database

1970

Edgar Codd

Microprocessor

1971

Intel, Busicom

Answering machine

1971

Valdemar Poulsen

Computed Tomography Imaging

1972

Godfrey Housfield, Alan Cormack

Ethernet

1972

Robert Metcalfe

E-entertainment and pre-cursor to video games

1972

Nolan Bushnell

Catalytic Converter

1974

Rodney Bagley, Irwin Lachman, Ronald Lewis

Recombinant DNA

1976

Herbert Boyer

Spreadsheet

1979

Daniel Bricklin, Bob Frankston

Part III: Innovation - Where has India succeeded and failed

arindam_banerji@yahoo

Arindam Banerji is a scientist and an entrepreneur in Silicon Valley. He took the usual route of going from the IITs, through a PhD in the US, to finally working in sundry research labs.

Arindam Banerji